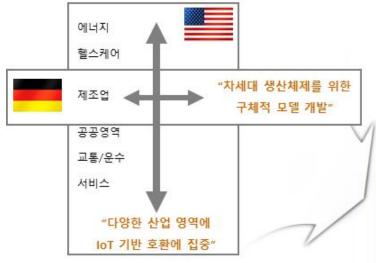
혁신성장을 위한 과학·산업 기술 정책 및 전략

2018. 8. 31.

제 1장. 2018년 대한민국, 우리는 어디에 있는가?

'혁신주도'에서 '부의주도' 로, 기로에선 대한민국!

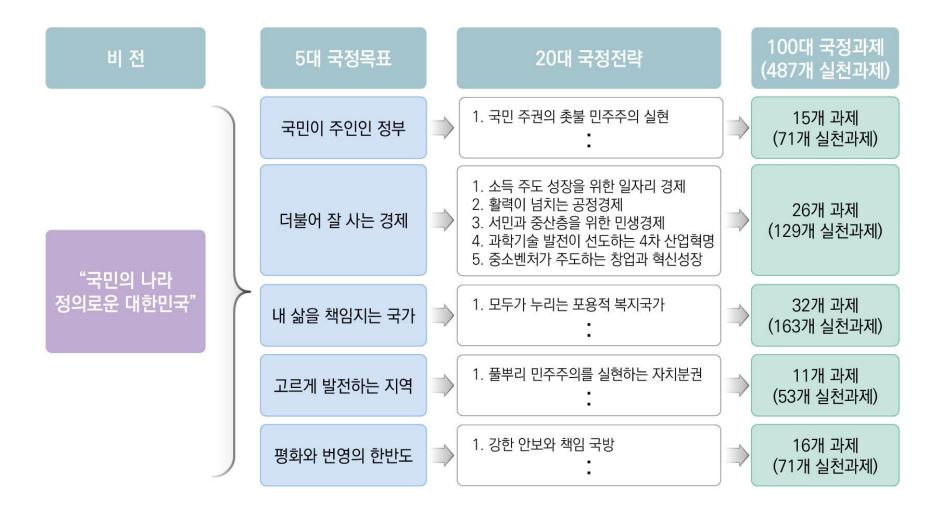

- → 지식경제사회로의 전환이 가속화되면서, Stock 역량(인적·물적 자원 투입) 보다는 Flow 역량(효율적 운용 능력)이 중요
- → 우리나라는 노동집약형 요소주도 단계 및 자본의 집중 투자를 통한 투자주도 단계를 거쳐, 현재는 혁신주도 단계에 위치해 있는 것으로 평가 (투입형 추격전략 → 가치창출형 선도전략으로 전환 중)

[마이클 포터의 국가경쟁력 발전단계]

<i>구분</i>	요소 주도	투자 주도	혁신 주도	부의 주도	
,	(factor driven)	(investment driven)	(innovation driven)	(wealth driven)	
특징	요소(자원, 노동) 투입 증가를 통한 생산성 제고 지향	적극적은 기술 도입과 대형 자본의 투입이 중요시 (요소 투입이 여전히 유효)	스스로 관련 기술을 개발/ 습득하며 정부 개입 보다는 민간부분의 혁신 역량이 확대	과거 이룩한 부를 기반으로 성장을 지속시키는 단계	
<i>경쟁력</i> <i>원천</i>		노동, 자본 등) 및 의 규모 및 수준 <i>량이 중요"</i>	자원의 효율적 활용 및 운용 능력 수준 <i>"Flow 역량이 중요"</i>		
비교 (1인당 GNI, Us \$)	Gap (10y?, 20y?) "nobody know" 43,850('16) 29,744('17) 13,077('96)				

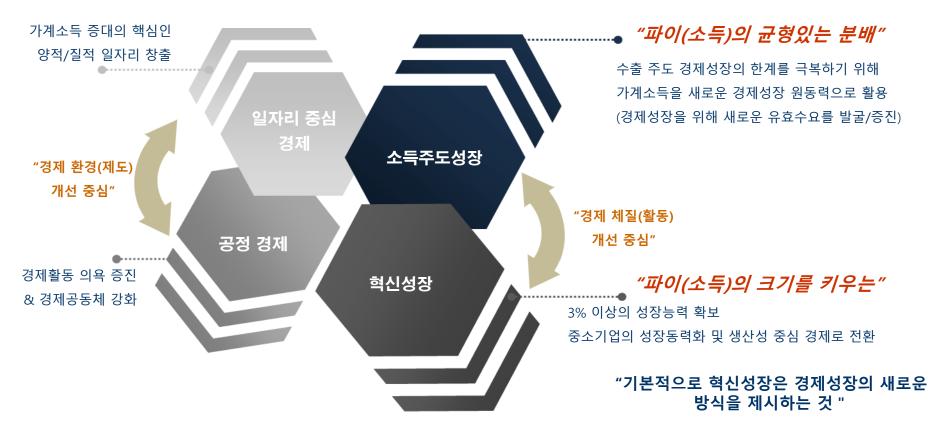
미래 경쟁력 확보를 위한 선진국의 새로운 전략

- → 미국 : 전통적 강점분야인 IT 기술을 다양한 산업으로 확장 (온라인에서 현실로)
- → 독일 : 전통적 강점 분야인 제조업 기술을 IT와 접목하여 차세대 생산체제를 구축 (현실에서 온라인으로)


Contents Contents

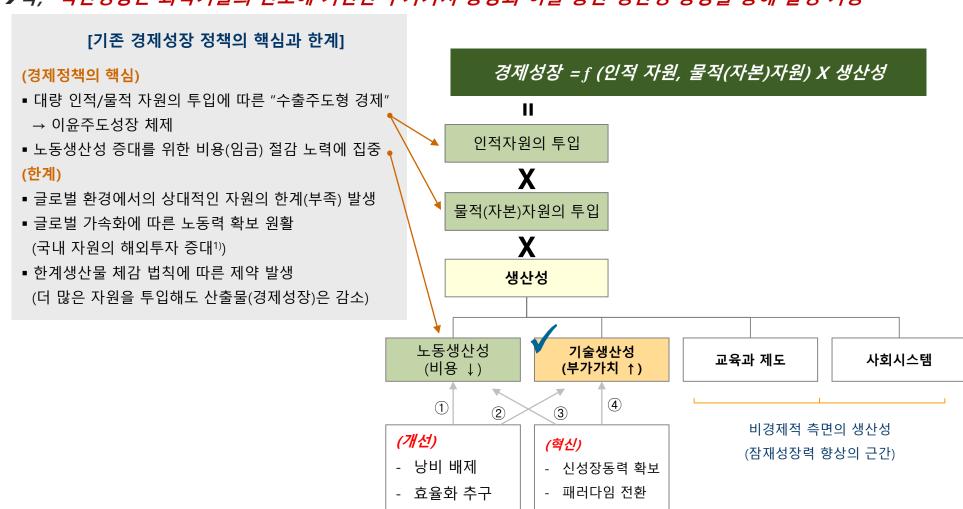
제 2장. 새로운 혁신을 디자인 하다

문재인정부 국정운영 5개년 계획


- → 새로운 국가 경쟁력 제고를 위한 국정운영 5개년 로드맵을 수립
- → 디지털화, 4차 산업혁명 대응 등의 내용을 제 4차 과학기술기본계획('18~'22)에 반영

^{*} 자료 : 국정운영 5개년 계획 중 경제·혁신 관련 주된 내용은 '더불어 잘 사는 경제'에 반영되어 있음

문재인정부의 핵심 경제정책 방향과 혁신성장


- → 문재인정부의 경제정책 방향은 지속성장 경제 구현을 위한 "경제환경 개선"과 "경제 체질 개선"으로 구분
- → 소득주도 성장이 파이(소득)이 균형있는 분배를 뜻한다면, 혁신성장은 파이(소득)의 크기를 키우는 정책
- → 즉, 혁신성장은 부가가치 및 생산성을 향상을 이루는 소득주도성장의 기반이라 할 수 있음

→ 즉, 생산성 향상을 통한 경제성장을 유인하는 정책

경제성장을 위한 새로운 방정식, 노동생산성에서 기술생산성으로...

- → 과거 이윤주도/수출주도형 경제에서는 노동생산성 방식(① & ③)에 집중 → 극복 불가능한 한계 직면
- → 과학·산업기술이 바라보는 혁신성장은 ②&④ 방식을 지향하는, "기술의 진보를 통한 기술생산성 증대"에 집중
- → 즉 "혁신성장은 과학기술의 진보에 기반한 부가가치 향상과 이를 통한 생산성 향상을 통해 달성 가능"

- 기술 향상 등

- 공정 재구축 등

앞으로도 과거의 혁신을 반복할 것인가?

- → 과거 추격형 혁신 체제에 기반한 국가 차원의 '혁신 관성'으로 인해 새로운 환경에 대한 적응은 부족
- → 4차 산업혁명 등 지금까지 경험해 보지 못한 환경에 대응하기 위한 새로운 '전략 틀'의 구성이 필요

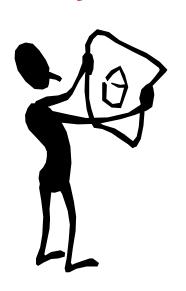
[전략과 실행에 대한 정책적 이해 부족]

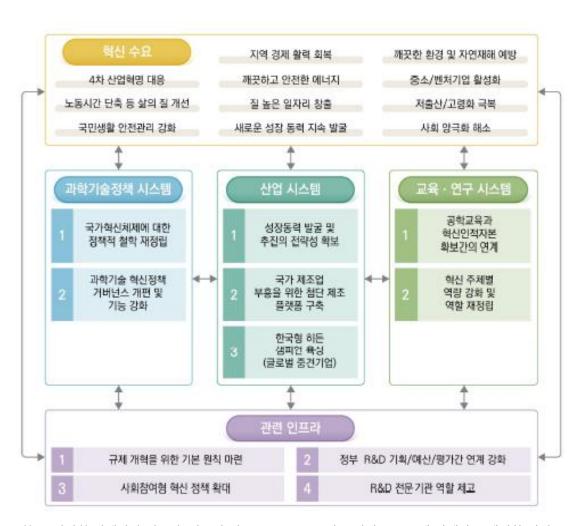
- ❖ "전략(strategy)의 시작은 올바른 조직구성(structure)에서 시작"된다고 할 만큼 전략 이행을 위한 조직 구성이 중요하나,
- ❖ 최근 10여년간 국가 과학기술 혁신을 이끌 만한 정부 조직 구성은 미약

[연속성과는 거리가 먼, 반복되는 혁신 정책]

- ❖ 특정 목표 달성과는 거리가 먼, 개별 주제별 정책 기획 및 수행에 따라 "정권에 따라 같은 이슈가 반복되는 혁신"이 이루어지고 있음
- e.g. 정부 R&D 효율성 제고, 산학연 협력 강화, 기술 창업 생태계 활성화 등

[정책의 혼선 and. 혁신을 대하는 관성]


- ❖ 개별 부처 또는 기관 단위의 혁신 활동으로 인해 국가 혁신활동체계가 각 부처별, 단위사업별, 개별법 형태로 분산되어 발전
- ❖ 혁신 정책에 대한 실패와 더불어 혁신을 대하는 관성에 의한 실패가 더 큼


새로운 국가혁신체제로의 "체질 전환"을 모색하고 선언할 시점

새로운 혁신체제로의 전환을 위한 기본 구조 마련

- → 혁신성장 정책을 뒷받침 할 수 있는 새로운 혁신체제로의 전환을 위한 '틀(structure)' 마련
- → 다양한 혁신 수요를 포괄적으로 수용하되, 중복되지 않으며, 정책들이 상호 연계될 수 있도록...

"우리(정부)가 하고 있는 일들이 어떤 혁신성장 정책에 위치하고 있으며, 다른 혁신성장 정책과는 이렇게 연계되고 있구나!!"

^{*} 기타 지역혁신체제 구축, 과기특성화대학(KAIST, DGIST 등) 운영 효율화 등 다양한 아젠다가 있으나, 시급성 및 중요도 등을 고려 우선적으로 11개 아젠다를 제시한 것임

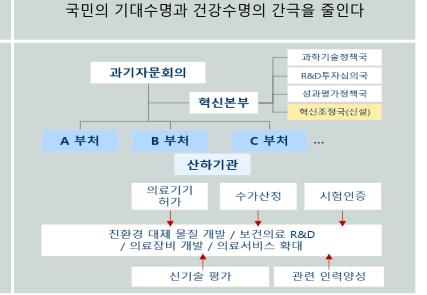
제 3장. 지속성장 경제 구현과 혁신성장 전략

1. 과학기술정책 시스템 혁신

- → 국가혁신체제에 대한 철학 재정립과 과학기술혁신정책 거버넌스 강화 필요
- → 이를 위해 새로운 혁신체제에 대한 선언적 정의와 더불어 이에 따른 혁신 정책 기조 통합 및 연계를 추진

구분	기존의 혁신	앞으로의 혁신		
<i>개요</i>	R&D = 혁신 (R&D 수행을 하면, 혁신이 이루어짐 → R&D를 혁신의 대상으로 인식)	R&D ≠ 혁신 (R&D 외에 새로운 가치창출을 위한 더 큰 프레임 필요 → R&D를 혁신을 위한 수단으로 인식)		
<i>주체</i> (혁신 주도자)	Government (정부가 혁신의 기획·수행을 주도) → 폐쇄적이며, 소수전문가 집단에 의해 수행	Governances (관련 전문가 집단이 혁신의 기획·수행을 주도) → 공개적이며, 다양한 전문가 집단이 참여 ex: 독일 industry 4.0 위원회		
혁신 방법	순차적 혁신 (pipeline innovation) (과정의 효율성과 요소의 다양성이 중요) ∴ 'How?'가 중요시 되나, 주체간 협력이 다소 모호 → 대상·목표의 확인과 이에 따른 부문·역할별 수행이 중요	동시다발적 혁신 (platform innovation) (전략의 효율성과 실행의 다양성이 중요) ∴ 'Why?, What?'이 중요시되며, 자연스러운 협력 가능 → 방향과 속도 그리고 전체 최적화가 중요		
<i>과학기술</i> 거버넌스	요건 충족을 위한 형식적인 거버넌스 청와대 (보좌관+3名), 혁신본부 위상 저하, 중장기 과학기술 비전 제시 미흡 등	<i>제대로 일할 수 있는 거버넌스</i> 청와대, 과기자문회의 및 혁신본부 기능 재정립, (가칭) 국가 혁신전략 2030 마련		

[예시] '의료분야 혁신'을 위한 새로운 국가 R&D 혁신 추진 프레임


- → 다양한 수요에 대한 통합과 조정, 연계를 통한 정책 추진 → R&D 효율성 및 생산성 제고 가능
- → 이를 Control 할 수 있는 강력한 리더십을 가지는 과학기술 거버넌스 구축 선행 필요

구분	정치	사회	<i>환경</i>	경제 & 과학·산업기술	
문제 인식	복지 사각지대 개선 등 복지 분야 예산 확대	건강수명 1년 늘리는데 연간 지불의사 비용 "약 2,500만원"	화학물질 및 관련 제품 안전 강화	의료장비, 신약 등 혁신성장 동력 확보	
요구 사항	재원조달 & 이해관계 집단 갈등 조정	의료비용 인하 & 고비용 치료에 따른 국가 보조 확대	믿고 편하게 사용할 수 있는 친환경 제품 확대	과학기술 역할 확대	

(As-Was, 상호 경쟁)

비전 신약 개발을 통한 세계 10대 제약강국 도약 (기대목표) (글로벌 신약 5개 개발, 수출 15조원 달성) A 부처 B 부처 C 부처 산하기관 급 신기술기반 여 신 약 개 추진 신 의 료 보건의료 비급여등 전략 발 기 Ш 0 · 술 평 가 R R 료 서 수 가 & & D D 비 . 산 정 스

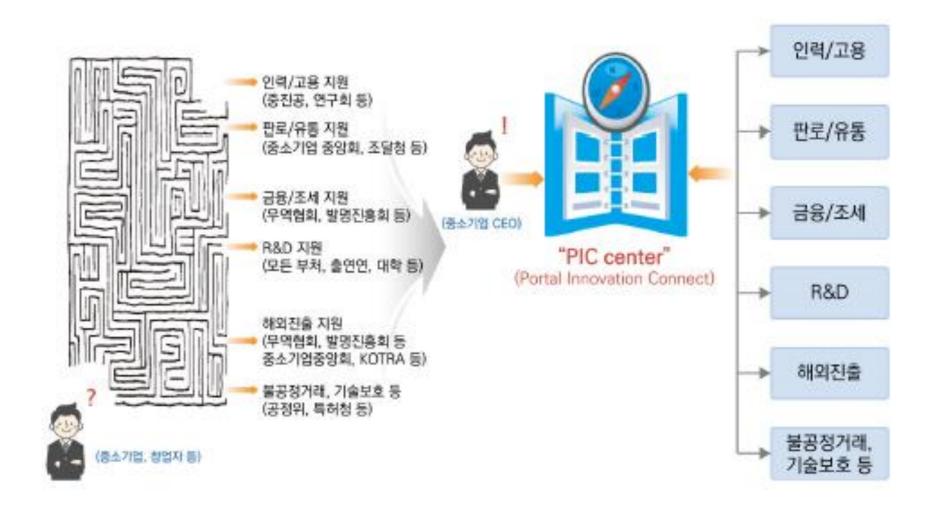
(To-Be. 연계 & 협력)

2. 산업 시스템 혁신

- → 국가 경쟁력의 근간이라 할 수 있는 제조 경쟁력의 고도화를 위한 국내 산업생태계 재편 검토
- → 제조업 부흥, 청년 창업 활성화, 글로벌 중견기업 육성 등 산업 정책의 구조적 기획(Structural Plan) 강화

성장동력 발굴 & 전략성 확보

- 부처별 성장동력 발굴의 한계를 직시하고, 국가 차원의 성장동력 발굴을위한 기획 역량 확충
- 민간 주도의 성장동력 발굴을 지향하되, 관련 능력의 확보와 시장 지배적■ 기술 결정 메커니즘 부족 등은 정부가 적극적으로 개입


국가 제조업 부흥 & 청년 창업 활성화

- 글로벌 밸류 체인(GVC) 상의 '첨단 소재·부품 공급기지 KOREA'로 자기 매김하기 위한 국가 차원의 Mega Plan 마련
- 공공연구기관의 책임있는 기술사업화 제고 및 청년 창업 유도 등을 위한
 과학기술 기반 청년창업센터 마련 「Innobation Square」 = Innovation + Incubation

한국형 글로벌 중견기업 육성

- 중소기업 전담 출연(연) 지정 및 해당 출연(연)과 주관 부처간의 책임 운영
 실시 (기업 성장 사다리를 고려한 정책 집중 지원)
- 사회적 기업형 중소기업 전용 종합무역상사 설립, 수요자 중심의 국가
 중소기업 지원 솔루션(PIC 센터) 제공 등 효율성 제고를 위한 시책 마련

[참고] Portal Innovation Connect Center 개념도

3. 교육·연구 시스템 혁신

- → 공학교육과 중소기업의 연구인력 확보(취업&창업 등)를 위한 현장형 이공계 교육 체제 구축
- → 과학기술 혁신의 근간인 대학과, 출연(연)에 대한 '선(先) 기능 정립, 후(後) 연계와 협력' 등을 위한 논의 필요

[현장형 이공계 프로그램 도입 방안(안)]

학 제	현 행				개 선(안)				
박사	하이노크여그				· 기업 연구소 근무와 연구학위 취득 병행				
석사	· 학위논문연구				· 현장 문제해결 학위 (6개월 현장연구)				
	현장실습	· 현장 적응 (4학점, 8주)			산업인턴제	· 기업 문제 공동해결 (18학점, 6개월)			
4학년 ~ 3학년	실무교육	· 캡스톤디자인			도제교육	· PBL기반 교육 (PBL, problem-based learning) · 캡스톤디자인		-based learning)	
	전공	전공 (40°	30 A	전공선택 (60%)	⇒	전공		필수)%)	전공선택 (40%)
2학년	· 전공기초 (35학점)		· 교양교육 (27~40학점)			· 전공기초 (40학점)			
~ 1학년	· 공학기초교 (24학점)	2육			· 공학기초교육 (24학점)	· 교양교육 (18~30학점)			

[혁신 주체별 기능 정립 방안(안)]

:	구분	기초 · 원천연구 수행의 경우	산업원천 · 응용연구 수행의 경우				
[대상	대학 및 기초분야 출연(연) 등	산업원천/실용화 연구 출연(연) 및 전문연구원				
į	특징	다양한 가능성 하에서 예측이 불가능하거나 의미가 적으며, 완벽한 '합의' 보다는 다양한 '제안'이 더 중요	산업계(소비자) 수요 확인이 비교적 수월하며, 단기간의 특정분야, 제품ㆍ서비스에 대한 파급효과 예측 가능				
듄	제점	연구자 자율성 ≠ 독립연구 ≠ 해당 전문가들만의 연구	단기 · 일회성(산업계를 고객으로 인식)이며, 개별 연구자 네트워크를 활용한 연계 중심				
	변화 방향	"과제 기획 및 결과의 개방성 강화" 연구자 자율성을 지속적으로 확대하되, 다양한 수요를 확인하고 연구결과가 확산(diffusion) 강화	"과제의 대형화를 통한 책임성 강화" 산업계 수요 발굴을 기관 단위 공모 형태로 전환하고, 기관 단위의 평가 및 보상 방안 확대				
개선방안	기획 평가	"분야별 전문가 네트워크 중심" 개별 연구자만의 기획이 아니라, 분야별 전문가 집단의 집단 지성을 활용	"산업계가 참여하는 거버넌스 중심" 과제 기획은 물론 과제 선정 이후에도 다양한 의견수렴 과정을 확대, 산업계의 관심과 참여를 독려				
2	기타	"연구개발 주체간 간극(gap) 축소를 위한 노력 확대" 1) 산학연 협력 메커니즘 변경: 공동 참여를 위한 「집합적 협력」→ 문제 해결을 위한 「분업적 협력」 2) 기초연구와 실용화 연구간의 성과 공유를 위한 프로그램 확대 → 단, 기초연구 결과를 활용하는 방식 (ex. 기초 기술 기반 Start Up 기업 등)에 대한 지원 확대에 집중					

4. 관련 인프라 혁신

- → 앞서 살펴본 세가지 섹터의 성공적인 추진을 위한 토대가 될 수 있는 영역
- → 단기간의 변화 보다는 지속적인 관심과 꾸준한 논의를 통한, 공감대에 기반한 혁신이 필요한 영역

① 규제 개혁을 위한 기본 원칙 마련

- 반복되는 규제개혁 실패, 대증적 처방보다는
 근본적인 개혁이 필요
- 규제개혁을 위한 기본원칙(basic principles) 마련
 및 규제특성 유형별 전략, 지속가능한 규제개혁
 시스템 구축

② 정부 R&D 기획·예산·평가간 연계 강화

- R&D 전주기 관리에 있어 관련 대상(프로그램, 사업, 과제 등)의 불일치 등으로 인해 현실적 연계 불가
- 국가차원의 정책 전략에 부합하는 연구개발 예산 구조 개편, 사업 단위 다년도 성과평가 및 예산 체계 구축 등의 개선 필요

③ 사회참여형 혁신 정책 수립체제 확대

- 과학기술의 사회적 역할 강화 요구, 이에 대한 해결을 모색하기 위해 다양한 사회적, 정책적 실천 노력 필요
- 모든 분야가 아니라 국민·사회의 참여 필요도가 높은 분야에 대해 선별적 우선 추진

④ R&D 전문기관 역할 제고

- 현재 거의 대부분의 부처에 분산되어 있는 17개 R&D 전문기관에 대한 개편 작업은 반드시 필요
- 단순히 '많아서 줄인다'가 아니라 '꼭 필요해서 개선 한다', 라는 접근 방식이 중요
 - * e.g. 미국의 NIH, DOD, 일본의 AMED 등 참고

"National prosperity is created, not inherited."

- Michael E. Porter -

The Competitive Advantage of Nations, HBR, 1990

End of Documents!